

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Description

The HTA50P3 is a GaAs Wide Bandwidth, High Gain, High Linearity Driver IC in a 16-pin 3x3 mm QFN package. The chip covers 1800 - 5000 MHz frequency range with 29 dB Gain and 35 dBm OIP3.

Features

• Operating Frequency Range: 1800 - 5000 MHz

• Operating Drain Voltage: +5V

High/Low Power Modes

• 50 Ω Input/Output

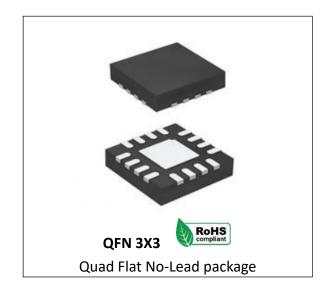
• Psat_High Mode: 25 dBm

• High Mode Gain: 29 dB

Psat_Low Mode: 22.5 dBm

• Low Mode Gain: 28 dB

Applications


• Small cell and Micro cell pre-Driver

• DAS (Distributed Antenna System)

• AAS (Active Antenna System)

Ordering Information

Part Number	Description
HTA50P3	Reel Package
HTA50P3EVB	HTA50P3 EVB

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Typical Performance

1800 - 4000 MHz

Parameter	Conditions	Min	Тур.	Max	Unit	
	High Power Mode					
Frequency	50 Ω Input/Ouput	1800		4000	MHz	
Gain	P _{IN} = -20 dBm	27	29	-	dB	
Gain Flatness	600 MHz BW	-	1	1.5	dB	
IRL		8	10	-	dB	
ORL		8	10	-	dB	
ISO		32	35	-	dB	
P1dB		22.5	24	-	dBm	
Psat		23.5	25	-	dBm	
OIP3	Pout = +2 dBm/tone, ΔF = 1 MHz	32	35	-	dBm	
Current Consumption		120	140	150	mA	
NF		-	5	6	dB	

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Parameter	Conditions	Min	Тур.	Max	Unit
Low Power Mode					
Frequency	50 Ω Input/Ouput	1800		4000	MHz
Gain	P _{IN} = -20 dBm	26	28		dB
Gain Flatness	600 MHz BW	-	1	1.5	dB
IRL		8	10	-	dB
ORL		8	10	-	dB
ISO		32	35	-	dB
P1dB		20.5	21.5	-	dBm
Psat		21.5	22.5	-	dBm
OIP3	Pout = +2 dBm/tone, $\Delta F = 1 \text{ MHz}$	32	33	-	dBm
Current Consumption		75	90	105	mA
NF		-	5	6	dB

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Typical Performance

4000 - 5000 MHz

Parameter	Conditions	Min	Тур.	Max	Unit		
	High Power Mode						
Frequency	50 Ω Input/Ouput	4000		5000	MHz		
Gain	P _{IN} = -20 dBm	26	28.0	-	dB		
Gain Flatness	600 MHz BW	-	1	1.5	dB		
IRL		8	10	-	dB		
ORL		8	10	-	dB		
ISO		34	40	-	dB		
P1dB		22	23	-	dBm		
Psat		22.5	24	-	dBm		
OIP3	Pout = +2 dBm/tone, ΔF = 1 MHz	32	35	-	dBm		
Current Consumption		125	145	155	mA		
NF		-	5	6	dB		

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Parameter	Conditions	Min	Тур.	Max	Unit		
	Low Power Mode						
Frequency	50 Ω Input/Ouput	4000		5000	MHz		
Gain	P _{IN} = -20 dBm	25	27.0	-	dB		
Gain Flatness	600 MHz BW	-	1	1.5	dB		
IRL		8	10	-	dB		
ORL		8	10	-	dB		
ISO		34	35	-	dB		
P1dB		20	21	-	dBm		
Psat		20.5	22	-	dBm		
OIP3	Pout = +2 dBm/tone, $\Delta F = 1 \text{ MHz}$	30	33	-	dBm		
Current Consumption		75	90	105	mA		
NF		-	5	6	dB		

Product datasheet

Absolute Maximum Ratings

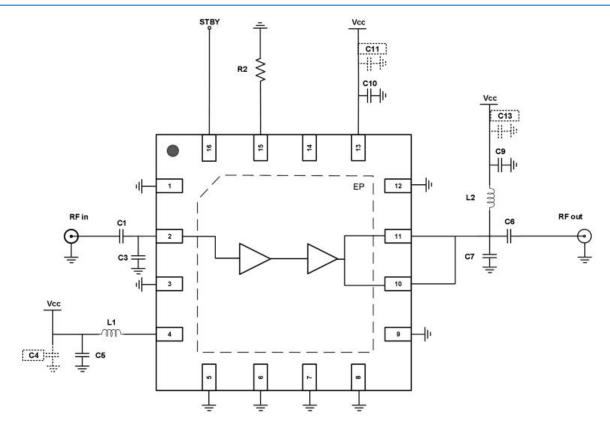
Parameter	Range/Value	Unit
Max Pin	20	dBm
Operation voltage (Vcc)	≤ 5.5	V
Storage Temperature (Tstg)	-55 to +150	°C
Junction Temperature (T _J)	-40 to +150	°C

Electrical Specification

DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
	STBY = 0V				
Drain Leakage Current IDSS	RF _{OUT} =5V	-	230	-	uA
	$V_{BIAS} = 5V$				
	STBY = 0V				
Gate Leakage Current Igss	RF _{OUT} =5V	-	2	-	mA
	$V_{BIAS} = 5V$				
Rise Time T _{RISE}	50% STBY-10/90% RF	-	500	-	ns
Fall Time T _{FALL}	50% STBY-90/10% RF	-	500	-	ns

Load Mismatch Test


Condition	Test Result
VSWR=20:1, at all Phase Angles, VDD = +5Vdc, IDQ= 130mA,	No Dovice
CW signal Pout = 24 dBm (1dB input Overdrive from P1dB) @1800 MHz test	No Device
on WATECH Application Board	Degradation
VSWR=20:1, at all Phase Angles, VDD = +5Vdc, IDQ= 130mA,	No Dovice
CW signal Pout = 24 dBm (1dB input Overdrive from P1dB) @2600 MHz test	No Device
on WATECH Application Board	Degradation

Thermal Information

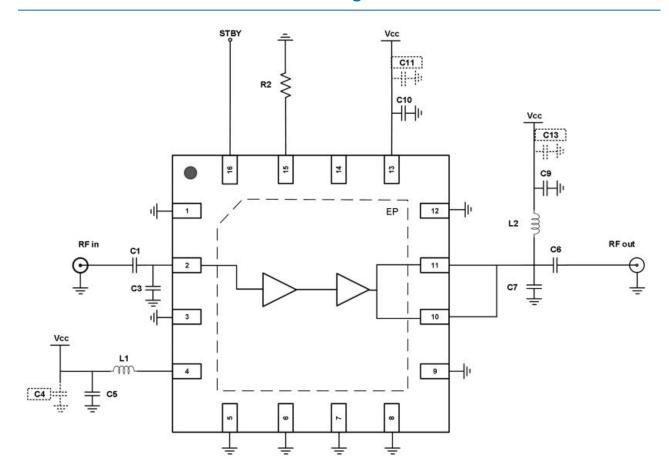
Parameter	Condition	Value (Typ)	Unit
Thermal Resistance	Tours 25°C CW signal 0.25W	40.0	°C /W
Junction to Case (Rтн)	TCASE= 25°C, CW signal 0.25W	49.8	C/VV

Product datasheet

HTA50P3 1800 - 4000 MHz Reference Design

EVB Schematic 1800 - 4000 MHz

1800 - 5000 MHz GaAs MMIC Amplifier


Product datasheet

Bill of Materials (BoM) - HTA50P3 1800 - 4000 MHz Reference Design

Reference	Value	Description	Manufacturer	P/N
Q1	-	1800 - 5000 MHz GaAs MMIC Amplifier	Watech	HTA50P3
C1, C5, C6, C9, C11	100pF	MLCC	Murata	GRM1555C1H101GA01
C2, C8, C12	NM	-	-	-
C3	0p4F	MLCC	Murata	GRM1555C1HR40WA01
C4, C10, C13	1uF	MLCC	Murata	GRM155C81E105KE11
C7	0p3F	MLCC	Murata	GRM1555C1HR30WA01
L1	3n3H	Chip Inductor	Coilcraft	0402HP_3N3XJEU
L2	12nH	Chip Inductor	Coilcraft	0402CS_12NXJLU
R1	0 Ω	Thick Film Resistor	-	0402
R2	2.4 kΩ High Power Mode 20 kΩ Low Power Mode	Thick Film Resistor	-	0402
R3	NM	-	-	-
R4	0 Ω	Thick Film Resistor	-	0402

Product datasheet

HTA50P3 4000 - 5000 MHz Reference Design

EVB Schematic 4000 - 5000 MHz

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Bill of Materials (BoM) - HTA50P3 4000 - 5000 MHz Reference Design

Reference	Value	Description	Manufacturer	P/N
Q1	-	1800 - 5000 MHz GaAs MMIC Amplifier	Watech	НТА50РЗ
C1, C5, C6, C9, C11	100pF	MLCC	Murata	GRM1555C1H101GA01
C2, C8, C12	NM	-	-	-
С3	0p4F	MLCC	Murata	GRM1555C1HR40WA01
C4, C10, C13	1uF	MLCC	Murata	GRM155C81E105KE11
C7	0p6F	MLCC	Murata	GRM1555C1HR30WA01
L1	0 Ω	Thick Film Resistor	-	0402
L2	12nH	Chip Inductor	Coilcraft	0402CS_12NXJLU
R1	0 Ω	Thick Film Resistor	-	0402
R2	2.4 kΩ High Power Mode 20 kΩ Low Power Mode	Thick Film Resistor	-	0402
R3	NM	-	-	-
R4	0 Ω	Thick Film Resistor	-	0402

Product datasheet

Performance Plots

1800 - 4000 MHz Reference Design

Figure 1 S21 Vs. Voltage - 25 °C

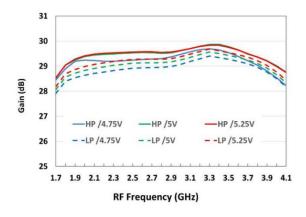


Figure 2 S11 Vs. Voltage - 25 °C

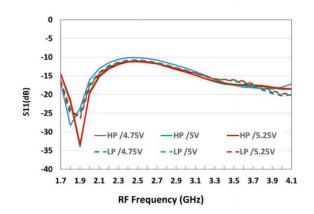


Figure 3 S12 Vs. Voltage - 25 °C

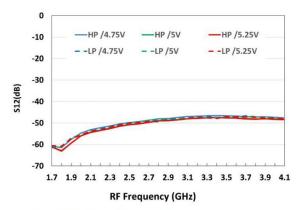


Figure 4 S22 Vs. Voltage - 25 °C

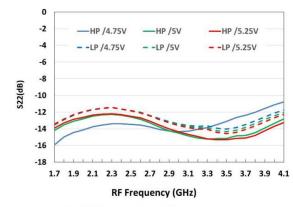


Figure 5 S21 Vs. Temp - 5V

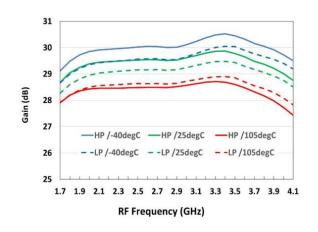
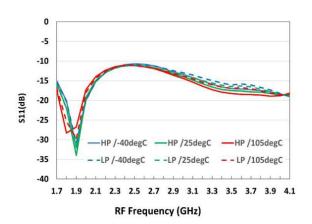



Figure 6 S11 Vs. Temp - 5V

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Figure 7 S12 Vs. Temp - 5V

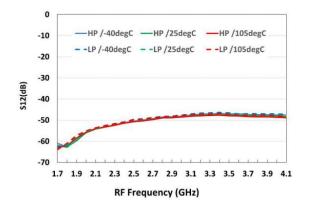
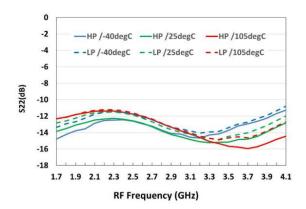



Figure 8 S22 Vs. Voltage - 5V

S Parameters

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Figure 9. OIP3 (High Power Mode) Vs. Volt - 25 °C

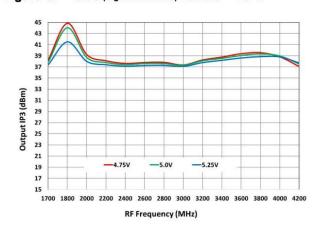


Figure 10. OIP3 (High Power Mode) Vs. Temp - 5V

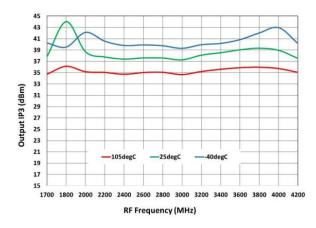


Figure 11 OIP3 (Low Power Mode) Vs. Volt - 25 °C

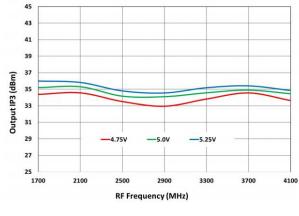
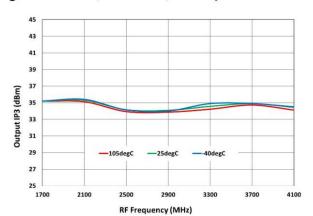



Figure 12 OIP3 (Low Power Mode) Vs. Temp - 5V

OIP3

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Figure 13. P1dB (High Power Mode) Vs. Volt - 25 °C

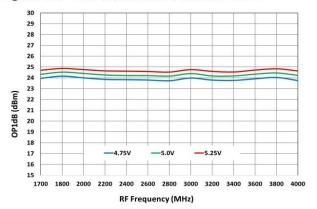


Figure 14. P1dB (High Power Mode) Vs. Temp - 5V

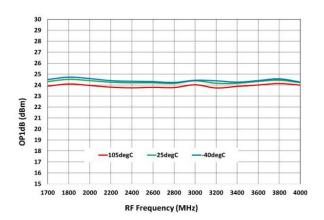


Figure 15 P1dB (Low Power Mode) Vs. Volt- 25 °C

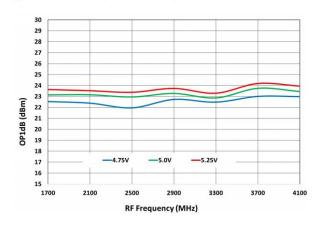
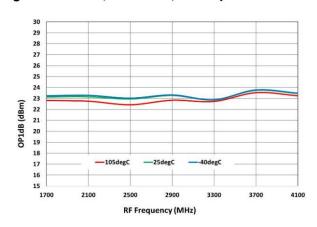



Figure 16 P1dB (Low Power Mode) Vs. Temp - 5V

P1dB

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Figure 17 Noise Figure vs. Temp - 5V

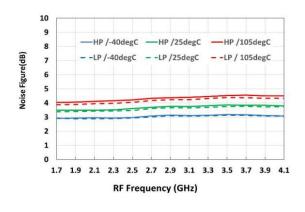
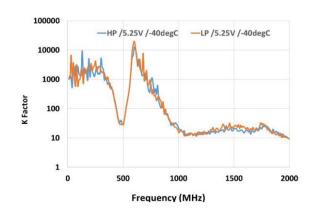



Figure 18. K Factors (Low Band)

NF & K-Factor

Product datasheet

Performance Plots

4000 - 5000 MHz Reference Design

Figure 1 S21 Vs. Voltage - 25 °C

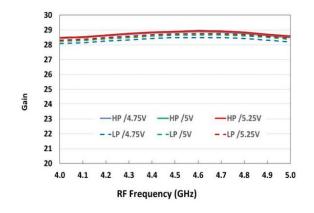


Figure 2 S11 Vs. Voltage - 25 °C

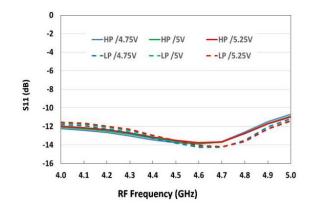


Figure 3 S12 Vs. Voltage - 25 °C

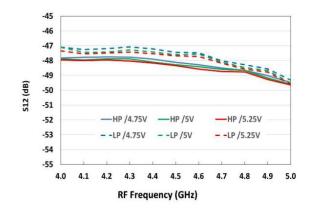


Figure 4 S22 Vs. Voltage - 25 °C



Figure 5 S21 Vs. Temp - 5V

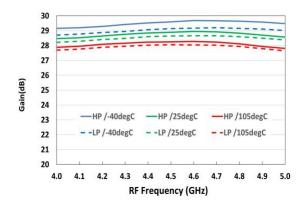
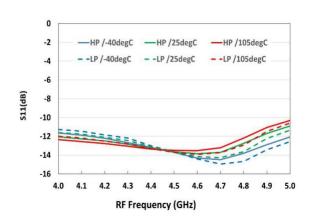



Figure 6 S11 Vs. Temp - 5V

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Figure 7 S12 Vs. Temp - 5V

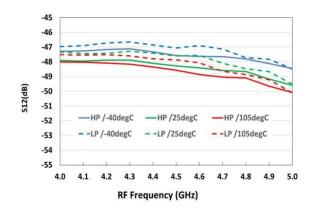
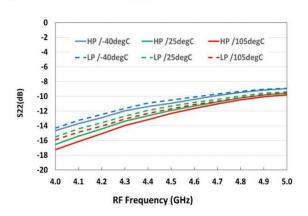



Figure 8 S22 Vs. Temp - 5V

S Parameters

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Figure 9. OIP3 (High Power Mode) Vs. Volt - 25 °C

Figure 10. OIP3 (High Power Mode) Vs. Temp - 5V

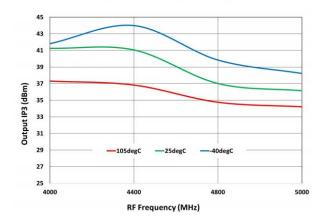


Figure 11 OIP3 (Low Power Mode) Vs. Volt - 25 °C

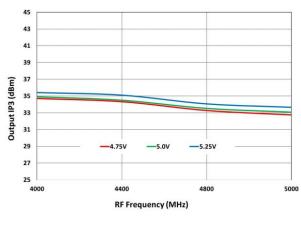
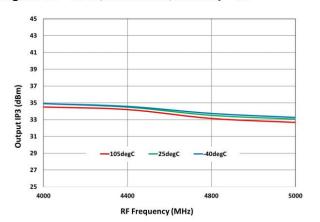



Figure 12 OIP3 (Low Power Mode) Vs. Temp - 5V

OIP3

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Figure 13. P1dB (High Power Mode) Vs. Volt - 25 °C

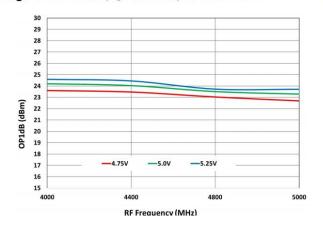


Figure 14. P1dB (High Power Mode) Vs. Temp - 5V

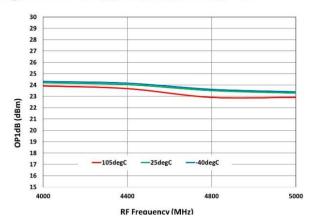


Figure 15 P1dB (Low Power Mode) Vs. Volt- 25 °C

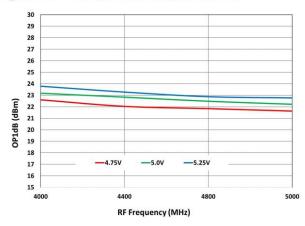
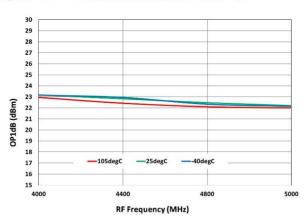



Figure 16 P1dB (Low Power Mode) Vs. Temp - 5V

P1dB

Test conditions unless otherwise noted: 25 °C, VDD = STBY = +5Vdc test on WATECH Application Board

Figure 17 Noise Figure vs. Temp - 5V

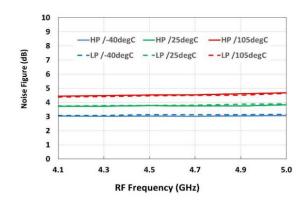
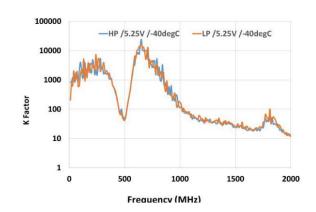
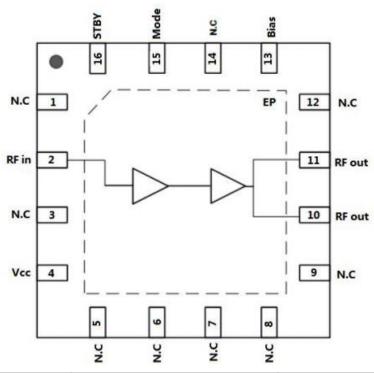



Figure 18. K Factors (Low Band)



NF & K-Factor

Product datasheet

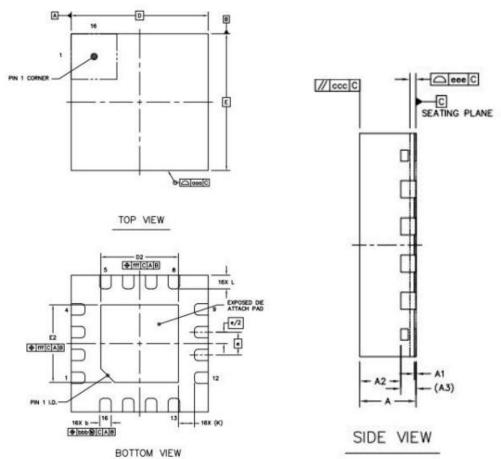
Pin Configuration and Description

Reference	Value	Description
1, 3, 5, 6, 7, 8, 9, 12, 14	NC	Not Connected
2	RF IN	RF Input
4	VCC	Voltage Supply
10	RF OUT	RF Output
11	RF OUT	RF Output
13	BIAS	Voltage Biasing
15	MODE	High Power mode/Low Power mode selection: Refer to R2 in BOM
16	STBY	Chip Enable: Low level> OFF High level> ON
EP	GND	Ground

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Package Marking and Dimensions


- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O (Sample: E596-20140001)
- Line3 (unfixed): Date Code + JY
 This Marking SPEC only stipulates the content
 of Marking. For marking requirements such as
 font and size, please refer to the latest version
 of "Watech Product Printing Specification"

Marking

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

ITEM	Symbol	MIN	TYP	MAX
Total Thickness	A	0.7	0.75	0.8
Stand Off	A1	0	0.02	0.05
Mold Thickness	A2		0.55	
L/F Thickness	A3		0.203	
Lead Width	b	0.2	0.25	0.3
Lead Length	L	0.2	0.3	0.5
Lead Pitch	E		0.5	
Lead-PAD Gap	K		0.35	je i i i i i i i i i i i i i i i i i i i
Body Size X	D		3	
Body Size Y	Е		3	
EP Size X	D2	1.6	1.7	1.8
EP Size Y	E2	1.6	1.7	1.8
Size Offset	fff		0.1	
Coplanarity	eee		0.08	

Package Dimensions

Product datasheet

Handling Precautions

Parameter	Grade
Moisture Sensitivity Level MSL	3

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B	JESD22-A114	
ESD – Human Body Model (MM)	Class A	EIA/JESD22-A115	
ESD – Charged Device Model (CDM)	Class III	JESD22-C101	

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

Datasheet Status

Document status	Product status	Definition
Objective Datasheet	Design simulation	Product objective specification
Preliminary Datasheet	Customer sample	Engineering samples and first test results
Product Datasheet	Mass production	Final product specification

Abbreviations

Acronym	Definition
LDMOS	Laterally-Diffused Metal-Oxide Semiconductor
CW	Continuous Waveform

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

Revision history

Document ID	Datasheet Status	Release Date	Revision Version
Rev 2.1	Rev 2.1 Product Marcg2021		Update upper and lower limit
Rev 2.1	Product	Marcg2021	specifications
Rev 2.2	Product	March 2023	New format based on English version
			datasheet
Rev 2.3	Product	April 2024	Update package marking information

1800 - 5000 MHz GaAs MMIC Amplifier

Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about WATECH:

• Web: <u>www.watechelectronics.com</u>

• Email: MKT@huatai-elec.com

For technical questions and application information:

• Email: MKT@huatai-elec.com

Important Notice

Information in this document is believed to be accurate and reliable. However, WATECH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by WATECH in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for WATECH products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. WATECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using WATECH products, and WATECH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WATECH product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WATECH products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a WATECH product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.